If it's not what You are looking for type in the equation solver your own equation and let us solve it.
125x^2-100x-10=0
a = 125; b = -100; c = -10;
Δ = b2-4ac
Δ = -1002-4·125·(-10)
Δ = 15000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15000}=\sqrt{2500*6}=\sqrt{2500}*\sqrt{6}=50\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-50\sqrt{6}}{2*125}=\frac{100-50\sqrt{6}}{250} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+50\sqrt{6}}{2*125}=\frac{100+50\sqrt{6}}{250} $
| 4x2-8=0 | | 6+x-2=-3x+12 | | 6h−1=−3 | | 2x^2-2x-35=x^2 | | 125x^2+20x-90=0 | | x=100-(1/10)P | | 125x^2-20x-90=0 | | x=100-1/10P | | 125x^2-100x-90=0 | | x+2+x+2+x+x=x+4+x+6+x | | x+3x-4=-3(2x+3) | | 125x^2-100x+90=0 | | -(x-8)+4x=2(x-4)+x | | -(x-8)+4x=2(x-6)+x | | x-4-2x=4(x-1)-5x | | 3x+5x+17x3x=3x+5x+(17x3)x | | 6(3x+3)+6x=186 | | -(3x+5)=2x–5+4x | | Y=8t^2+32t | | 5x-10+3x+2=180 | | 3*9x-9x=6 | | -(3x+5)=2x-5+4x | | 7/x=-7/2 | | 6/4=15/x | | 6-1/3x^2=-70 | | 3x+5x+9x=3600 | | -0.1d^2+d+.5=0 | | V=22v-5/4v-8 | | a-5.5+2.9=18+40a+8 | | x/58=37 | | I(t)=-0.36(10)^2+10.8(10)+819 | | I(t)=-0.36t^2+10.8t+819 |